
58 The Delphi Magazine Issue 67

Speeding Up A Mathematical
Expression Parser
Optimisation by generating machine code at runtime
by Hallvard Vassbotn

One of the more useful capabili-
ties of a flexible application is

runtime interpretation of scripts,
formulae or other textual informa-
tion. As users of a compiled lan-
guage like Object Pascal, most of us
cringe at the idea of spending
valuable execution time spinning
around in an interpreter loop,
reading raw text or at best p-code
terms and dispatching them.

If the system has the right
design, we can often improve the
runtime performance dramatically
by pre-compiling a corresponding
stream of sequential machine code
instructions. This is particularly
true in situations where the
interpreted code will be called
frequently, as in the case of plot-
ting the chart of a user-supplied
function. In this article I will show
one example of how such an
optimisation can be done.

Confessions Of A Surfer
Quite some time ago I was surfing
around the web, looking for inter-
esting programming sites in gen-
eral and Delphi sites in particular. I
find it a little disappointing that
many sites contain not much more
than links to other sites. However,
one of the sites I visited was Agner
Fog’s1. His Pentium assembly opti-
misation manual has become a de
facto reference work, more
detailed and more correct than
Intel’s own documentation. It’s
highly recommended reading if

you are into optimisations and
assembly programming, or just
want to know more about what
happens inside the processor.

Pentium Secrets
At the time, I focused on the key
interesting points that I did not
know much about. I particularly
noted that the Pentium II and
later processors have amazingly
improved branch prediction logic,
a very high misprediction penalty,
and that indirect calls are always
predicted to go to the same target.
The following quotes document
this in more detail:

‘22.2.2 Misprediction penalty
(PMMX, PPro, PII and PIII)

‘In the PPro, PII and PIII, the
misprediction penalty is very high
due to the long pipeline. A mispre-
diction usually costs between 10 and
20 clock cycles. It is therefore very
important to be aware of poorly pre-
dictable branches when running on
PPro, PII and PIII.

‘22.2.3 Pattern recognition for con-
ditional jumps (PMMX, PPro, PII and
PIII)

‘These processors have an
advanced pattern recognition mech-
anism which will correctly predict a
branch instruction which, for exam-
ple, is taken every fourth time and
falls through the other three times. In
fact, they can predict any repetitive
pattern of jumps and nojumps with a
period of up to five, and many pat-
terns with higher periods...

‘22.2.9 Indirect jumps and calls
(PMMX, PPro, PII and PIII)

‘There is no pattern recognition
for indirect jumps and calls, and the
BTB can remember no more than
one target for an indirect jump. It is
simply predicted to go to the same
target as it did last time.’

This implies that you will have
many costly processor stalls when
calling code through pointers if the
target address isn’t always the
same. This is just what happens
when you call virtual methods of
different object types. The
addresses of the virtual methods
are stored in the object instance’s
VMT table. In two objects of
different class types, that both
override a virtual method, the
VMT will point to different
methods. So, when it is time to call
the virtual method, the processor
will stall every time you switch
from one object type to another.
This typically happens when you
call a virtual method for all the
objects in a list or collection of
some sort. Isn’t it ironic
that today’s modern processors
are not optimised to execute
object-oriented code �?

The Fastest Freeware
Parser In The World
At about the same time, I took a
closer look at Stefan Hoffmeister’s
site2, downloading (amongst other
interesting material) his version of
the Parser10 library.

This component parses mathe-
matical expressions at runtime,
evaluating them fairly efficiently.
The readme file claimed a perfor-
mance only 40% to 80% slower
than the corresponding native
compiled Delphi code, and that
made it the fastest parser on the
freeware market. The component
has been successively developed
by Renate Schaaf3, Alin Flaidãr4 and
Stefan Hoffmeister.

POperation = ^TOperation;
TMathProcedure = procedure(AnOperation: POperation);
TOperation = record
Arg1: PParserFloat;
Arg2: PParserFloat;
Dest: PParserFloat;
NextOperation: POperation;
MathProc: TMathProcedure;
Token: TToken;

end;

➤ Listing 1

March 2001 The Delphi Magazine 59

Upon examining the code, I
found that it could accomplish this
impressive performance by con-
verting the text expression into a
linked list of operation records.
Each record contains a pointer to a
pre-coded routine that performs
one mathematical operation (such
as addition, multiplication, sine,
etc). See Listing 1.

Evaluating the expression is
then as simple as following the
linked list in a loop, calling through
the procedure pointer in each
iteration. See Listing 2.

As I was reading through this
code, I immediately got the famous
light-bulb effect in my brain. It was
very clear to me that this loop
would be severely affected by the
misprediction penalties described
by Fog. More often than not, the
next operation would be different
to the previous one. So, for each
iteration, the processor would stall
for 10 to 20 cycles before moving
on. It should therefore be possible
to improve the performance of this
code by avoiding these stalls.

I will come back to this later.
First, let us first look a little more
closely at the interface of this
parser component and how we
would typically use it.

The Vanilla Version
The original version of Parser10
performed very well and was very
flexible and nicely designed. It had
a number of useful mathematical
functions built-in and you could
easily add your own functions and
variables. You can see the public

interface of the component in
Listing 3.

TCustomParser is the base class
that contains the logic and adds
support for the mandatory opera-
tors (+, -, /, * and so on). TParser
adds basic mathematical functions
(such as SIN, TAN and SQRT) and
some predefined variables (A, B, C,
etc) for convenience. Table 1 lists
the supported constants, opera-
tors and functions.

In basic use, you set the Expres-
sion property to the formula you
want to evaluate. Then you can set
the value of one or more of the
built-in variables by setting the
corresponding property (A, B, X,
etc). Finally, you evaluate the
expression by reading the Value
property.

You can use the ClearFunction
method to remove the definition of
an existing function or one of the
two AddFunction methods to add
new ones. The mathematical func-
tions can take one or two input
parameters (for instance, SIN takes
one parameter, while MAX takes
two) and they always produce one
output parameter. These func-
tions are implemented as proce-
dures (yeah, I know that sounds a
bit corny) that have a single
pointer to TOperation parameter.
Listing 4 shows how the built-in
functions SIN and MAX have been
implemented. If you want to add
your own functions, follow the
same pattern.

function TCustomParser.GetValue: Extended;
var
LastOP: POperation;

begin
if FStartOperationList <> nil then begin
LastOP := FStartOperationList;
while LastOP^.NextOperation <> nil do begin
with LastOP^ do begin
MathProc(LastOP);
LastOP := NextOperation;

end;
end;
LastOP^.MathProc(LastOP);
Result := LastOP^.Dest^;

end else
Result := 0;

end;

TCustomParser = class(TComponent)
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
{ Function support }
procedure AddFunctionOneParam(const AFunctionName: string;
const Func: TMathProcedure);

procedure AddFunctionTwoParam(const AFunctionName: string;
const Func: TMathProcedure);

procedure ClearFunctions;
procedure ClearFunction(const AFunctionName: string);
{ Variable support }
procedure ClearVariables;
procedure ClearVariable(const AVarName: string);
function VariableExists(const AVarName: string): boolean;
function SetVariable(VarName: string; const Value:
Extended): PParserFloat;

property Variable[const VarName: string]: Extended
read GetVariable write SetVar;

{ Error handling }
property ParserError: boolean read FParserError;

published
{ To evaluate an expression simply read the

Value property. }

property Value: Extended read GetValue write SetValue
stored False;

property Expression: string read FExpression
write SetExpression;

property PascalNumberformat: boolean
read FPascalNumberformat write FPascalNumberformat
default True;

property OnParserError: TParserExceptionEvent
read FOnParserError write FOnParserError;

end;
TParser = class(TCustomParser)
public
constructor Create(AOwner: TComponent); override;

published
{ predefined variable properties }
property A: ParserFloat read FA write FA;
property B: ParserFloat read FB write FB;
property C: ParserFloat read FC write FC;
property D: ParserFloat read FD write FD;
property E: ParserFloat read FE write FE;
property T: ParserFloat read FT write FT;
property X: ParserFloat read FX write FX;
property Y: ParserFloat read FY write FY;

end;

Constants PI

Operators + , - , * , / , ^ , MOD, DIV

Functions COS, SIN, SINH, COSH, TAN, COTAN, ARCTAN, ARG, EXP, LN,
LOG10, LOG2, LOGN, SQRT, SQR, POWER, INTPOWER, MIN,
MAX, ABS, TRUNC, INT, CEIL, FLOOR, HEAV, SIGN, ZERO, PH,
RND, RANDOM

➤ Table 1

➤ Listing 3

➤ Listing 2

60 The Delphi Magazine Issue 67

Arg1 is the first parameter, Arg2 is
the (optional) second parameter,
while Dest is where you should put
the result of the mathematical
operation. All three parameters
are pointers to floating point vari-
ables (doubles). With this design,
the Dest pointer of the first opera-
tion can directly update the Arg1
parameter of the next operation.
The two fields both point to the
same double variable. This clever
trick allows quick execution with
no copying of the result values into
the parameters of the next opera-
tion. The result and parameter
variables are simply aliases for
each other. The complex logic in
the P10Build unit is responsible for
setting up the linked Operation
records and to ensure that this
aliasing is correct.

On this month’s disk is a simple
demonstration project (cunningly
named SimpleDemo.dpr) that
shows how to perform basic
operations, such as defining new
functions, defining new variables,
setting the value of a variable,
getting the value of a variable,
setting the expression and also

evaluating the expression. You can
see the code for this in Listing 5.

Black Magic
The ParseFunction routine in the
P10Build unit takes the original
string expression (typically
entered by the end-user at
runtime) along with string lists rep-
resenting the variables and the
one- and two-parameter functions
and, after chugging along on this
for a while, it returns the linked
list of operations, ready to be
executed.

I trimmed this unit by removing
some unused and buggy code to
dynamically handle deeply nested
expressions. I also simplified some
conditional code that dealt with
long versus short strings. I might
have inadvertently made the code
incompatible with Delphi 1, but at
least the code is a little cleaner
(and we are only generating 32-bit
code anyway).

Still, this monstrous routine
weighs in at about 1,500 lines,
including a number of nested, for-
warded, routines. The logic here
could no doubt be improved a
little; rewriting it as a class, with
the nested routines as methods,

wouldn’t hurt either. In this
respect, the code for the parser
presented by Chris McNeil5 is
probably a better model.

However, this article is not
about making the parsing of the
expression string into terms as effi-
cient and elegant as possible. It is
about optimising the execution of
those terms. For now, we will treat
this piece of code as a black box,
not bothering to dive into its dark
inner details.

Limitations
The parser uses a few brute-force
techniques (such as searching for
substrings using Pos), so there are
a few usage limitations. The most
severe and noticeable limitation is
that you cannot embed spaces in
the formula expression. The
number of nested brackets is
limited to 20 (controlled by the
maxBracketLevels constant) and
the maximum number of terms
within each bracket (I think) is
limited to 50 (controlled by the
maxLevelWidth constant).

Be sure to also read the original
Parser10 documentation and
readme file. I have not been able to
update the help files, but most of
the information in it is still
accurate.

Speeding It Up
OK, now we have examined how
the parser component works and
how to use it. Let’s start the fun
and see how we can speed it up

procedure _sin(AnOp: POperation); far;
begin
with AnOp^ do
dest^ := sin(arg1^);

end;
procedure _max(AnOp: POperation); far;
begin
with AnOp^ do
if arg1^ < arg2^ then
dest^ := arg2^

else
dest^ := arg1^;

end;

procedure TSimpleDemoForm.CalcBtnClick(Sender: TObject);
begin
// Setting the expression
Parser.Expression := ExpressionEdit.Text;
// Evaluating the expression
ResultEdit.Text := FloatToStr(Parser.Value);

end;
procedure TestOneParam(AnOp: POperation);
begin
with AnOp^ do
dest^ := arg1^*3;

end;
procedure TestTwoParam(AnOp: POperation);
begin
with AnOp^ do
dest^ := arg1^ + arg2^*2;

end;
procedure TSimpleDemoForm.DefineFuncsBtnClick(Sender:
TObject);

begin
// Adding functions
Parser.AddFunctionOneParam('OneParam', TestOneParam);
Parser.AddFunctionTwoParam('TwoParam', TestTwoParam);

end;
procedure TSimpleDemoForm.RemoveFuncsBtnClick(Sender:
TObject);

begin
// Removing functions
Parser.ClearFunction('OneParam');
Parser.ClearFunction('TwoParam');

end;
procedure TSimpleDemoForm.DefineVarBtnClick(Sender:
TObject);

var
MyVar2: PParserFloat;

begin
// Setting variables - slow
Parser.Variable['MyVar1'] := 3.14;
MyVar2 := Parser.SetVariable('MyVar2', 0);
// Setting variables - fast
MyVar2^ := 50;
// Setting built-in variables, fast
Parser.A := 60;
// Getting variables - slow
ShowMessage('Value of MyVar1 = ' +
FloatToStr(Parser.Variable['MyVar1']));

// Getting variables - fast
ShowMessage('Value of MyVar2 = ' + FloatToStr(MyVar2^));
// Getting built-in variables, fast
ShowMessage('Value of A = ' + FloatToStr(Parser.A));

end;

➤ Listing 4

➤ Listing 5

62 The Delphi Magazine Issue 67

even more. The evaluation of the
expression after all the variable
values have been set basically
boils down to the simple loop we
looked at in Listing 2. Simply put,
the expressions have been put into
reverse Polish notation and con-
verted to a linked list of operation
records, as defined in Listing 1.

In this record, the MathProc field
is a pointer to a procedure that will
perform the desired calculation.
This loop executes fairly fast;
however, there are a couple of
problems with it. First of all, it is a
very small loop, so the CPU spends
a fair amount of time just jumping
around. Secondly, and much
worse, the branch targeting pre-
diction of the Pentium II and later
processors will be seriously
handicapped by this code. The
problem is that in most cases the
operation pointers will point to
different procedures for each run
through the loop. As Fog explains,

the Pentium processors have
branch target prediction logic that
is tied to the address the call is
being made from. If the code calls
the same target twice in a row from
the same address, execution is
improved. If not, there will be a
mis-prediction and the processor
must be stalled and execution
pipes must be flushed.

To kill both birds with one
stone, the code would improve

significantly if we somehow could
unroll the loop: something like the
example shown in Listing 6.

The problem is that we don’t
know at compile-time how many
levels we should unroll. We could
check for a nil condition each
time, but that would slow us down
again, and we would have to
include a large quantity of identi-
cal code.

A better solution would be to
play the compiler. The list of oper-
ation records will be our ‘source
code’ and we should generate
machine code that mimics the
unrolled loop in Listing 7. The first
step is to examine the code that
the compiler generates. Figure 1
shows the CPU view of the code
generated for Listing 6.

LastOP^.MathProc(LastOP);
LastOP := LastOP^.NextOperation;
LastOP^.MathProc(LastOP);
LastOP := LastOP^.NextOperation;
LastOP^.MathProc(LastOP);
LastOP := LastOP^.NextOperation;
...
LastOP^.MathProc(LastOP);
LastOP := LastOP^.NextOperation;

➤ Listing 7

while LastOP^.NextOperation <> nil do
begin
LastOP^.MathProc(LastOP);
if LastOP^.NextOperation = nil then Break;
LastOP := LastOP^.NextOperation;
LastOP^.MathProc(LastOP);
if LastOP^.NextOperation = nil then Break;
LastOP := LastOP^.NextOperation;
LastOP^.MathProc(LastOP);
if LastOP^.NextOperation = nil then Break;
LastOP := LastOP^.NextOperation;
LastOP^.MathProc(LastOP);
if LastOP^.NextOperation = nil then Break;
LastOP := LastOP^.NextOperation;

end;

➤ Figure 1

➤ Listing 6

procedure TCustomParser.GenerateDynamicCode(
OperationCount: integer);

var
ThisCallOperation : PCallOperation;
ReturnLastOp : PReturnLastOp;
Operation: POperation;

begin
{ Now generate some code dynamically on the heap to call
the operations }

if OperationCount > 0 then begin
{ Allocate a memory block of the right size }
GetMem(DynamicCode,
(OperationCount * SizeOf(TCallOperation)) +
SizeOf(TReturnLastOp));

{ Loop through the operations and build code as we go }
ThisCallOperation := DynamicCode;
Operation := FStartOperationList;
while True do begin
with ThisCallOperation^ do begin
MOV_EAX := MovEAXInstruction;

LastOpAddr := Operation;
CALL := CallInstruction;
OFFSET := PChar(@Operation^.MathProc) -
(PChar(@ThisCallOperation^.CALL) + 5);

end;
Inc(ThisCallOperation);
if Operation^.NextOperation = nil then
Break;

Operation := Operation^.NextOperation;
end;
{ Add code to return the last node }
ReturnLastOp := PReturnLastOp(ThisCallOperation);
with ReturnLastOp^ do begin
MOV_EAX := MovEAXInstruction;
LastOpAddr := Operation;
RET := RetInstruction;

end;
end;

end;

➤ Listing 8

March 2001 The Delphi Magazine 63

This is pretty good code. But,
because we will be generating the
machine code, we can cut a few
corners and reduce the indirection
the compiler must make. For
instance, we can just plug the
address of the routines directly
into the CPU instructions instead
of loading them indirectly from the
operation records at runtime.
Again, this will shave off a few CPU
cycles.

After some studying and
trial-and-error, I was ready to write
the machine code generation.
Listing 8 shows the Generate-
DynamicCode method.

After parsing the string expres-
sion, and converting it into the
linked list of operation records, we
have counted the number of
operations and this is passed to
the routine in the OperationCount
parameter. The amount of code we
must generate is proportional to
this number, so we allocate the
correct number of bytes using
GetMem (see the sidebar entitled
Don’t Execute Me!).

In this case, the code we are gen-
erating has a pre-defined layout, so
it made things easier to define a
couple of records that mimic the
machine code. I also defined con-
stants for the instruction op-codes.
This makes the code more
self-documenting. See Listing 9.

The generated code will consist
of a number of TCallOperation
records (one for each operation)
followed by a single TReturnLastOp
record. The TCallOperation
records first loads EAX with the
address of the Operation record
then calls directly to the procedure
implementing the mathematical

operation. Each call is unrolled and
thus has its own source address.
Because of this, the CPU is able to
achieve 100% branch target
prediction (versus close to 0% for
the old code). This is the main
reason for the performance
improvement. There are also fewer
memory accesses, no checks and
no branches (except the CALLs, of
course). The compiled Pascal code
had to check for nil, load the oper-
ation address and also the address
of the next operation record. All of
this has been unrolled in the
generated machine code.

Note the special logic we must
use to calculate the relative CALL
instructions. This is because the
immediate address value must be a
relative offset (negative to CALL
backwards and positive to CALL for-
wards) to the current IP address
value. This peculiar looking chip
design ensures that the code can
be reallocated in memory without
requiring fixups. This reduces the
number of fixups required when a
DLL must be dynamically rebased,
for instance. While executing the
CALL, the IP (instruction pointer) is
already pointing to the next
instruction (5 bytes after this
instruction). So we have to take
this into account when calculating

Don’t Execute Me!
At this point, avid readers might
object and say that we should use
the special TCodeHeapobject from
the Delayed DLL Loading6 article.
Recall that we intend to generate
machine instructions in this block
of memory and the Win32 API
documentation says memory
pages that will be executed must
have the PAGE_EXECUTE access
protection flag set (see the docu-
mentation for VirtualProtect,
for instance). In my HVDLL pro-
ject, I followed the recipe, allo-
cated my own private memory
pages and set the protection flags
to PAGE_EXECUTE_READWRITE.

My modified Parser10 code
originally used the TCodeHeap
class and I had written: ‘We allo-
cate the correct number of bytes
from a specially designed
CodeHeap. This is a Windows API
based heap completely separate
from the RTL memory allocator.
This is done because we must set
the executable attribute on the
memory pages we allocate to
allow the bytes we patch to be
executed by the CPU. Otherwise
we would get Access Violations
when trying to CALL the dynami-
cally generated code.’

Imagine my surprise when I
read this in Inside Windows 2000,
3rd Edition, by Mark Russinovich
and David Solomon (page 397):
‘The x86 architecture doesn't
implement execute-only access
(that is, code can be executed in
any readable page), so Windows
2000 doesn't support this option
in any practical sense (though
IA-64 does). Windows 2000 treats
PAGE_EXECUTE_READ as PAGE_
READONLY and PAGE_EXECUTE_
READWRITE as PAGE_READWRITE.’

All the normal memory allo-
cated with System's GetMem has
the PAGE_READ attribute set, so
there is actually no need for the
VirtualProtect tricks in my
TCodeHeap class.

➤ Listing 9

➤ Figure 2

while LastOP^.NextOperation <> nil do begin
LastOP^.MathProc(LastOP);
if LastOP^.NextOperation = nil then Break;
LastOP := LastOP^.NextOperation;
LastOP^.MathProc(LastOP);
if LastOP^.NextOperation = nil then Break;
LastOP := LastOP^.NextOperation;
LastOP^.MathProc(LastOP);
if LastOP^.NextOperation = nil then Break;
LastOP := LastOP^.NextOperation;
LastOP^.MathProc(LastOP);
if LastOP^.NextOperation = nil then Break;
LastOP := LastOP^.NextOperation;

end;

64 The Delphi Magazine Issue 67

the address, giving us the
somewhat complex expression:

OFFSET := PChar(

@OperationLoop^.Operation) -

(PChar(@ThisCallOperation^.CALL)

+ 5);

Figure 2 shows the resulting code
in Delphi’s CPU view.

In this case the expression was
Sqrt(pi)*4+5-3/5. The CPU view is
able to interpret the addresses and
find the symbolic names (_sqrt,
_ReadDivide and so on). Notice
how the operations have been
re-ordered into the correct evalua-
tion order. This code is very fast
and does not suffer from any
misprediction stalls at all. We call
this lump of code as if it was a func-
tion, so after calling all the
required MathProcs, we set EAX to
the address of the last operation
record and then do a RET
instruction to return to the caller.

The DynamicCode field now points
to this block of memory with our
dynamically generated ‘function’
So the evaluation of the expres-
sion, corresponding to the loop in
Listing 6, can now be written like
Listing 10.

Performance Testing
My claims of improving the perfor-
mance of Parser10 wouldn’t be
worth much if I could not back it up
with some hard numbers and test
applications. The original Parser10
package came with some simple
testing projects. A loop that

exercises a (somewhat strange)
expression showed an improve-
ment from 80ms to 60ms on my
machine: that’s an improvement of
about 25%. I didn’t have the time to
perform more involved and varied
performance testing. To help you
carry out your own testing, I have
left the old code in place: simply
undefine the DYNAMIC_CODE define
at the top of the Parser10 unit to
get the old looping version of the
code.

Plotting XY Functions
A simple and enlightening way of
using Parser10 is to plot the X and
Y coordinates of various different
simple functions. This can be done
easily with TeeChart and Parser10,
see Figure 3.

The meat of the code for this
sample can be found in Listing 11.
This code isn’t exactly bullet-
proof, but it’s useful as a demon-
stration. Specifically, if the starting
value and step value are too far
apart, round-off errors caused by
floating point operations will start
to show. You can enter any for-
mula that takes X as an input.

This concept can be extended to
plot other types of charts or even
3D-surfaces with X, Y and Z axes.
Then you would have to include
two variables in the formula for Y.
Both X and Z would vary from a
maximum to a minimum using a
specified step value.

Other uses would be to integrate
user-defined or database-stored
formulae as part of your applica-
tion. For instance, a financial
information package might down-
load the available formulae from a
central server in text format. This
way the application can be easily
extended with new functionality
without any recompiles or time-
consuming downloads.

Machine-Code Generation As
An Optimisation Technique
Most of the time you cannot do
much better than the compiler
when generating machine code.
Most optimisations can be
achieved by selecting the right
algorithm for the problem at hand

➤ Figure 3

function TCustomParser.GetValue: Extended;
type
TCallOperationFunc = function: POperation;

begin
if Assigned(DynamicCode) then
Result := TCallOperationFunc(DynamicCode)^.Dest^

else
Result := 0;

end;

procedure TPlotForm.GoBtnClick(Sender: TObject);
var
X: Double;
XTo: Double;
XStep: Double;
Y: Double;

begin
MathExprParser.Expression := ExpressionEdit.Text;
LineSeries.Clear;
X := StrToFloat(XFromEdit.Text);
XTo := StrToFloat(XToEdit.Text);
XStep := StrToFloat(XStepEdit.Text);
while X <= XTo do begin
MathExprParser.X := X;
Y := MathExprParser.Value;
LineSeries.AddXY(X, Y, '');
X := X + XStep;

end;
end;

➤ Above: Listing 10 ➤ Below: Listing 11

March 2001 The Delphi Magazine 65

(I’m sure you have heard this a
thousand times before, but bear
with me). And it goes without
saying that you should always mea-
sure to find if and where you might
have bottlenecks. And measure
again to see that your changes
actually made an improvement in
the performance. 95% of all code
will never have to be optimised.
However, if you find that your situ-
ation fulfils the following criteria,
consider if machine-code genera-
tion could be the right algorithm to
use:
➢ You are looping over a struc-

ture, calling a virtual method,
method pointer or procedure
pointer;

➢ The routine being called
typically varies each time;

➢ This loop is called from another
external loop, or from
time-sensitive code;

➢ The structure is relatively static
compared to the number of
times the code is executed.

These points are the indications of
a typical interpreter. The main
pitfall is calling different functions
from the same spot in a loop. This

kills the CPU’s branch prediction
and performance goes down the
drain. You will find that this pat-
tern is often found in highly poly-
morphic code. In some cases it
might help to sort the called object
instances by type. This way, the
effect is reduced, although not
eliminated.

Conclusion
Time is flying and the editorial
deadline is looming on the horizon,
so I will have to wrap up the article
here. Hopefully, I have been able to
make a useful contribution to an
already speedy expression parser.
Remember that this is freeware
and you are most welcome to keep
on improving and expanding it,
sharing the result with the rest of
the world. The convoluted and

References
1. Agner Fog: www.agner.org

2. Stefan Hoffmeister: www.econos.de

3. Renate Shcaef: www.xmission.com/~renates/delphi.html

4. Alin Flaidãr: www.datalog.ro/delphi/delphires.html

5. Chris McNeil, Express Yourself, The Delphi Magazine Issue 23, July 1997

6. Hallvard Vassbotn, DelayLoading of DLLs, Issue 43, March 1999

brute-force code in P10Build could
undoubtedly be improved upon.
Dynamic resolution of variable
names (using an event) would be
useful for some applications. The
ability to define user functions at
runtime, expanding the available
functions dynamically, could be
nice. Feel free to join in!

Hallvard Vassbotn is a Senior
Systems Developer at Infront AS
(visit www.theonlinetrader.com),
where he develops systems for
distributing real-time financial
information over the internet.
You can reach Hallvard at
hallvard.vassbotn@c2i.net

	Confessions Of A Surfer
	Pentium Secrets
	The Fastest Freeware Parser In The World
	The Vanilla Version
	Black Magic
	Limitations
	Speeding It Up
	Don’t Execute Me!
	Performance Testing
	Plotting XY Functions
	Machine-Code Generation As An Optimisation Technique
	Conclusion
	References

